Non-equilibrium quantum transport theory for current and noise of single molecules and organized molecular networks
Research Aim
Variations and fluctuations of current is a problem common to nano-structured materials and is a serious problem in the nanoelectronics field. Concerning single-molecule systems, experimental measurement studies on the average value of currents using the break junction technique have been undertaken, and we have been able to explain the results in conjunction with theory. Single-molecule systems are the best systems for researching the problem of ‘fluctuation and variation’ and can advance the collaborative research of theory and experiment. Although we considered attempting a project even more ambitious, including problems such as network storage using the interaction between ‘single-molecule memories’, we plan to make a new theoretical proposal rooted in the fluctuation and variation research results.
Role and Need in the Group
The aim of this research is to explain the nature of fluctuation and variation from the standpoint of material science, and use these findings purposely for creating memory and learning functions in assembled molecular networks. The design guidelines we obtain will lead to success in experimental research areas including synthesis, measurement, and device fabrication.
Research Content
This research group has elucidated problems such as temperature characteristics of currents through a single molecule as well as problems of local heating and heat dissipation by performing quantum conduction calculation that incorporates phonon scattering effects and electron correlation effects. Based on these studies, we will make semiquantitative predictions for specific molecules and materials by performing ab initio calculations as we theoretically elucidate the problem of fluctuation and variation.
Others
Members
Research representative: Yoshihiro Asai Director, Research Center / AIST Research Center for Computational Design of Advanced Functional Materials (CD-FMat)
Member of the research project: Hisao Nakamura Senior Researcher / AIST Nanomaterials Research Institute
Member of the research project: Marius Bürkle Researcher / AIST Research Center for Computational Design of Advanced Functional Materials Functional mathematical modeling Team
Papers List
2017
[22] Resistive switching mechanism of GeTe–Sb2Te3 interfacial phase change memory and topological properties of embedded two-dimensional states
[20] The Orbital Selection Rule for Molecular Conductance as Manifested in Tetraphenyl-Based Molecular Junctions [重要文献]
Marius Buerkle; Limin Xiang; Guangfeng Li; Ali Rostamian; Thomas Hines; Shaoyin Guo; Gang Zhou; Nongjian Tao; Yoshihiro Asai J. Am. Chem. Soc., 139, 2989 - 2993, 2017/1/9 DOI: 10.1021/jacs.6b10837
2016
[19] Thermoelectric effect and its dependence on molecular length and sequence in single DNA molecules [重要文献]
Yueqi Li; Limin Xiang; Julio L. Palma; Yoshihiro Asai; Nongjian Tao Nature Communications, 7, 11294-1 - 11294-8, 2016/4/15 DOI: 10.1038/ncomms11294
[18] The effect of a Ta oxygen scavenger layer on HfO2-based resistive switching behavior: thermodynamic stability, electronic structure, and low-bias transport
[17] Competitive effects of oxygen vacancy formation and interfacial oxidation on an ultra-thin HfO2-based resistive switching memory: beyond filament and charge hopping models
[16] Thermoelectricity at the Molecular Scale: Large Seebeck Effect in Endohedral Metallofullerenes
See Kei Lee; Marius Buerkle; Ryo Yamada; Yoshihiro Asai; Hirokazu Tada Nanoscale, 7, 20497 - 20502, 2015/10/27 DOI: 10.1039/c5nr05394c
[15] Towards multiple conductance pathways with heterocycle-based oligo(phenyleneethynylene) derivatives
Delia Miguel; Luis Álvarez de Cienfuegos; Ana Martín-Lasanta; Sara P. Morcillo; Linda A. Zotti; Edmund Leary; Marius Buerkle; Yoshihiro Asai; Rocío Jurado; Diego J. Cárdenas; Gabino Rubio-Bollinger; Nicolás Agraït; Juan M. Cuerva; M. Teresa González J. Am. Chem. Soc., 137, 13818 - 13826, 2015/10/9 DOI: 10.1021/jacs.5b05637
[14] Single-molecule conductance of a chemically modified, π-extended tetrathiafulvalene and its charge-transfer complex with F4TCNQ
Raúl García; M. Ángeles Herranz; Edmund Leary; M. Teresa González; Gabino Rubio Bollinger; Marius Buerkle; Linda A. Zotti; Yoshihiro Asai; Fabian Pauly; Juan Carlos Cuevas; Nicolás Agraït; Nazario Martín Beilstein J. Org. Chem. , 11, 1068 - 1078, 2015 DOI: 10.3762/bjoc.11.120
[13] First-principles calculation of the thermoelectric figure of merit for [2,2] paracyclophane-based single-molecule junctions [重要文献]
Marius Buerkle; Thomas J. Hellmuth; Fabian Pauly; Yoshihiro Asai Phys. Rev. B, 91, 165419-1 - 165419-8, 2015 DOI: 10.1103/PhysRevB.91.165419
[12] Vibronic spectroscopy using current noise [重要文献]
[11] Thermoelectric transport from first-principles - Biphenyl-based single-molecule junctions
Marius Buerkle; Fabian Pauly; Yoshihiro Asai Materials for Energy Infrastructure (単行本:Springer), 43 - 51, 2015 DOI: 10.1007/978-981-287-724-6_5
[10] Temperature Dependence of the Thermopower and its Variation of the Au Atomic Contact
R. Matsushita; S. Kaneko; S. Fujii; H. Nakamura; M. Kiguchi Nanotechnology, 26, 4, 045709-1 - 045709-6, 2015/1/30 DOI: 10.1088/0957-4484/26/4/045709
2014
[9] Influence of surface polarity on water dynamics at the water/rutile TiO2(110) interface
T. Ohto; A. Mishra; S. Yoshimune; H. Nakamura; M. Bonn; Y. Nagata J. Phys. Condens. Matter, 26, 224102-1 - 224102-8, 2014 DOI: 10.1088/0953-8984/26/24/244102
[8] Single Molecular Resistive Switch Obtained via Slding Multiple Anchoring Points and Varying Effective Wire Length
M. Kiguchi; T. Ohto; K. Sugiyasu; S. Nakajima; M. Takeuchi; H. Nakamura J. Am. Chem. Soc., 136, 7327 - 7332, 2014 DOI: 10.1021/ja413104g
[7] Design of ReRAM Cell Structure by Metal Buffer and Contact Engineering via First-Principles Transport Calculation
[4] Heat dissipation and its relation to thermopower in single-molecule junctions
Linda A. Zotti; Marius Buerkle; Fabian Pauly; Woochul Lee; Kyeongtae Kim; Wonho Jeong; Yoshihiro Asai; Pramad Reddy; Juan Carlos Cuevas New J. Phys., 16, 015004-1 - 015004-25, 2014/1/2 DOI: 10.1088/1367-2630/16/1/015004
2013
[3] First-principles modeling for current-voltage characteristics of resistive random access memories
Non-equilibrium quantum transport theory for current and noise of single molecules and organized molecular networks
Research Aim
Variations and fluctuations of current is a problem common to nano-structured materials and is a serious problem in the nanoelectronics field. Concerning single-molecule systems, experimental measurement studies on the average value of currents using the break junction technique have been undertaken, and we have been able to explain the results in conjunction with theory. Single-molecule systems are the best systems for researching the problem of ‘fluctuation and variation’ and can advance the collaborative research of theory and experiment. Although we considered attempting a project even more ambitious, including problems such as network storage using the interaction between ‘single-molecule memories’, we plan to make a new theoretical proposal rooted in the fluctuation and variation research results.
Role and Need in the Group
The aim of this research is to explain the nature of fluctuation and variation from the standpoint of material science, and use these findings purposely for creating memory and learning functions in assembled molecular networks. The design guidelines we obtain will lead to success in experimental research areas including synthesis, measurement, and device fabrication.
Research Content
This research group has elucidated problems such as temperature characteristics of currents through a single molecule as well as problems of local heating and heat dissipation by performing quantum conduction calculation that incorporates phonon scattering effects and electron correlation effects. Based on these studies, we will make semiquantitative predictions for specific molecules and materials by performing ab initio calculations as we theoretically elucidate the problem of fluctuation and variation.
Others
Members
Papers List
2017
Hisao Nakamura; Ivan Rungger; Stefano Sanvito; Nobuki Inoue; Junji Tominaga; Yoshihiro Asai
Nanoscale, 9, 9386 - 9395, 2017/6/20
DOI: 10.1039/c7nr03495d
Marius Buerkle; Yoshihiro Asai
Sci. Rep., 7, 41898-1 - 41898-7, 2017/2/2
DOI: doi:10.1038/srep41898
Marius Buerkle; Limin Xiang; Guangfeng Li; Ali Rostamian; Thomas Hines; Shaoyin Guo; Gang Zhou; Nongjian Tao; Yoshihiro Asai
J. Am. Chem. Soc., 139, 2989 - 2993, 2017/1/9
DOI: 10.1021/jacs.6b10837
2016
Yueqi Li; Limin Xiang; Julio L. Palma; Yoshihiro Asai; Nongjian Tao
Nature Communications, 7, 11294-1 - 11294-8, 2016/4/15
DOI: 10.1038/ncomms11294
Xiaoliang Zhong; Ivan Rungger; Peter Zapol; Hisao Nakamura; Yoshihiro Asai; Olle Heinonen
Phys. Chem. Chem. Phys., 18, 7502 - 7510, 2016/2/15
DOI: 10.1039/c6cp00450d
Hisao Nakamura; Yoshihiro Asai
Phys. Chem. Chem. Phys., 18, 8820 - 8826, 2016/3/1
DOI: 10.1039/c6cp00916f
2015
See Kei Lee; Marius Buerkle; Ryo Yamada; Yoshihiro Asai; Hirokazu Tada
Nanoscale, 7, 20497 - 20502, 2015/10/27
DOI: 10.1039/c5nr05394c
Delia Miguel; Luis Álvarez de Cienfuegos; Ana Martín-Lasanta; Sara P. Morcillo; Linda A. Zotti; Edmund Leary; Marius Buerkle; Yoshihiro Asai; Rocío Jurado; Diego J. Cárdenas; Gabino Rubio-Bollinger; Nicolás Agraït; Juan M. Cuerva; M. Teresa González
J. Am. Chem. Soc., 137, 13818 - 13826, 2015/10/9
DOI: 10.1021/jacs.5b05637
Raúl García; M. Ángeles Herranz; Edmund Leary; M. Teresa González; Gabino Rubio Bollinger; Marius Buerkle; Linda A. Zotti; Yoshihiro Asai; Fabian Pauly; Juan Carlos Cuevas; Nicolás Agraït; Nazario Martín
Beilstein J. Org. Chem. , 11, 1068 - 1078, 2015
DOI: 10.3762/bjoc.11.120
Marius Buerkle; Thomas J. Hellmuth; Fabian Pauly; Yoshihiro Asai
Phys. Rev. B, 91, 165419-1 - 165419-8, 2015
DOI: 10.1103/PhysRevB.91.165419
Yoshihiro Asai
Phys. Rev. B, Rapid Commun., 91, 161402-1(R) - 161402-4(R), 2015
DOI: 10.1103/PhysRevB.91.161402
Marius Buerkle; Fabian Pauly; Yoshihiro Asai
Materials for Energy Infrastructure (単行本:Springer), 43 - 51, 2015
DOI: 10.1007/978-981-287-724-6_5
R. Matsushita; S. Kaneko; S. Fujii; H. Nakamura; M. Kiguchi
Nanotechnology, 26, 4, 045709-1 - 045709-6, 2015/1/30
DOI: 10.1088/0957-4484/26/4/045709
2014
T. Ohto; A. Mishra; S. Yoshimune; H. Nakamura; M. Bonn; Y. Nagata
J. Phys. Condens. Matter, 26, 224102-1 - 224102-8, 2014
DOI: 10.1088/0953-8984/26/24/244102
M. Kiguchi; T. Ohto; K. Sugiyasu; S. Nakajima; M. Takeuchi; H. Nakamura
J. Am. Chem. Soc., 136, 7327 - 7332, 2014
DOI: 10.1021/ja413104g
Hisao Nakamura; Takehide Miyazaki; Kengo Nishio; Hisashi Shima; Hiroyuki Akinaga; Yoshihiro Asai
Computational Electronics (IWCE), 2014 International Workshop, 1 - 4, 2014
DOI: 10.1109/IWCE.2014.6865829
Yoshihiro Asai; Hisao Nakamura
ECS Transactions, 63, 14, 63 - 69, 2014
DOI: doi:10.1149/06414.0063ecst
Takehide Miyazaki; Hisao Nakamura; Kengo Nishio; Hisashi Shima; Hiroyuki Akinaga; Yoshihiro Asai
JPS Conf. Proc., 1, 012075-1 - 012075-6, 2014
DOI: 012075, 10.7566/JPSCP.1.012075
Linda A. Zotti; Marius Buerkle; Fabian Pauly; Woochul Lee; Kyeongtae Kim; Wonho Jeong; Yoshihiro Asai; Pramad Reddy; Juan Carlos Cuevas
New J. Phys., 16, 015004-1 - 015004-25, 2014/1/2
DOI: 10.1088/1367-2630/16/1/015004
2013
Takehide Miyazaki; Hisao Nakamura; Kengo Nishio; Hisashi Shima; Hiroyuki Akinaga; Yoshihiro Asai
Proceedings of Materials Research Society, , 2013
DOI: 10.1557/opl.2013.763
Takehide Miyazaki; Hisao Nakamura; Kengo Nishio; Hisashi Shima; Hiroyuki Akinaga; Yoshihiro Asai
Proceedings of APPC12, , 2013
DOI: 10.7566/JPSCP.1.012075
Hisao Nakamura; Tatsuhiko Ohto; Takao Ishida; Yoshihiro Asai
J. Am. Chem. Soc. , 135, 16545 - 1652, 2013/11
DOI: 10.1021/ja407662m